
O Language for Newbies

Oytun Özdemir

Agust 2020

Contents

I System Oriented Functional Programming Language 4

1 What is System Oriented Functional Programming Language?
(SOFPL) 5
1.1 Hello World for C and O language! 5
1.2 Installing . 6

1.2.1 Download or obtain Binary file 6
1.2.2 Compile from source code 6
1.2.3 Work with that O Language on Docker 6

2 Dosyalarla çalışmak 7
2.1 File types we need to know . 7

3 Working with modules 8

II Basic definitions and functions 9

4 Definitions 10
4.1 How to define? . 10
4.2 Types . 10

4.2.1 String and Integer . 10
4.2.2 Logical Operations (Boolean) 10
4.2.3 Array and Hashes . 11
4.2.4 Conditional Expressions (If/Else) 11
4.2.5 Functions . 12
4.2.6 Loops . 12
4.2.7 Literals . 13
4.2.8 Scopes . 14
4.2.9 Exceptions . 15

5 Input and Output 17

6 Math Operators 18
6.1 Basic Functions . 18

6.1.1 Addition . 18
6.1.2 Extraction . 18
6.1.3 Divide . 18
6.1.4 Multiplication . 19

6.2 Yardımcı İşlevler . 19

1

CONTENTS 2

6.2.1 Sum . 19
6.2.2 Abs . 19

7 Geometry Functions 20
7.0.1 Logarithm (Log) . 20
7.0.2 Cosine (Cos) . 20
7.0.3 Tangent (Tan) . 20

8 Comparison Functions 21
8.1 Equals . 21
8.2 Is Not Equal . 21
8.3 Larger . 22
8.4 Smaller . 22
8.5 Bigger than or Equal . 22
8.6 Smaller than or Equal . 22

9 Mapping Functions 24

10 File Operations 25
10.1 File Read . 25
10.2 File Write . 25
10.3 File Delete . 25

11 Folder Operations 26

12 System Operations 28
12.1 File Permissions . 28
12.2 System Environment Operations 29
12.3 System Commands and Processes 29
12.4 Connections . 30

12.4.1 Socket Open and Listen 30
12.4.2 Socket Connection . 30

III Web Server and Database Operations 32

13 Web Server 33
13.1 Routers . 33

13.1.1 GET . 34
13.1.2 POST . 34
13.1.3 PUT . 34
13.1.4 UPLOAD . 35
13.1.5 DELETE . 35
13.1.6 STATIC . 35

14 Database Management 37
14.1 Model and Connections . 37
14.2 Table Create, Drop, Truncate (Migrate/Drop/Truncate) 38
14.3 Create . 39
14.4 Update . 39
14.5 Fetch . 40

CONTENTS 3

14.6 Query . 41
14.7 Delete . 42
14.8 Search . 43

IV Helper Functions 45

15 What is helper functions/internal functions? 46
15.1 File Render . 46
15.2 XML Helpers . 46
15.3 JSON Helpers (JSON encode/decode) 47
15.4 Color Helper (Colorize) . 47
15.5 Regular Expressions . 48
15.6 Encryption Helpers (Encrypt/Decrypt) 48
15.7 Replace Helper . 48

V Dangerous Waters (Biohazard) 49

16 Why? 50

17 Use Text as Code (Eval) 51

18 Machine Code Execute (Assembly) 53

19 Execute Programs (Open/Run/Exec) 55
19.1 Open Programs (Open) . 55
19.2 Run Applications (Run) . 55
19.3 Execute commands on OS shell (Exec [SH/CMD]) 56

VI Example Real World Applications 57

20 Web Framework Development 58

Part I

System Oriented Functional
Programming Language

4

Chapter 1

What is System Oriented
Functional Programming
Language? (SOFPL)

Using your system’s infrastructure, it is a programming language that allows you
to develop programs on it. A syntax structure where you can control both the
functional and the system there is. Code that you write in other programming
languages and system functions to shorten purposes. Accordingly in other areas
includes some features to make your work easier. In the example I gave below,
I wrote it in C and O. you see a Hello World app.

1.1 Hello World for C and O language!

include <stdio.h>

int main()

{

printf("Hello, World!");

return 0;

}

You have to type the Printf function into a main. Accordingly, we had to
include the” stdio ” library. This is because the printf function is in the ”stdio”
library.

show("Hello, World!")

println("Hello, World!")

"Hello, World!"

Here is simply show, println is a function. The Show is used only for the
show. Println on line it is used to suppress text or objects. If the object if
you write it alone,it will print out the last. We didn’t include any library or
anything because it was in the language because of the syntax structure, the

5

CHAPTER 1. WHAT IS SYSTEMORIENTED FUNCTIONAL PROGRAMMING LANGUAGE? (SOFPL)6

system is already in hibernation their function is to arrive. We have to see the
result of the object. we can see by writing directly.

1.2 Installing

There are many methods to establish that language. The simplest is to download
the olang executable file. Accordingly, docker is ready to be written in the Go
programming language it has libraries.

1.2.1 Download or obtain Binary file

After you take this file and move it to your place, you can type olang file in
Linux. you can run your ola files directly. or you can type in an olag to try and
do direct experiments.

You can find the Binary file at this link: http://gitlab.com/olanguage/
olang

1.2.2 Compile from source code

If you already have a go ecosystem, you can source it as follows: download the
latest version in the GOPATH directory to both source codes you can look at
it and compile your own tests. Depending on this, you can make your own
improvements.

$ go get -v gitlab.com/olanguage/olang

You can find the source code address at the bottom of the link I will give.
http://gitlab.com/olanguage/olang

1.2.3 Work with that O Language on Docker

If you are saying You shouldn’t take the risk. You can make improvements with
that language on Docker. For example, if you have written a code but want to
deploy it, the docker library is for you.

http://hub.docker.com/repository/docker/olproject/olang

To run the code directly on the Docker, use a you can follow the path.

docker run -t olproject/olang olang

Alternatively, type your own Dockerfile file on the Docker you can build.

FROM olproject/olang

RUN ["olang", "yourfile.ola"]

This way your own files and on the docker you can operate your work with
olang.

http://gitlab.com/olanguage/olang
http://gitlab.com/olanguage/olang
http://gitlab.com/olanguage/olang
http://hub.docker.com/repository/docker/olproject/olang

Chapter 2

Dosyalarla çalışmak

If we go into a little more detail, that language is your ola extension they run
or say your files. In this way more than one you can continue your operations
by including the file.

def hello = fn(name){

return ("Hello, "+name+"! Welcome to the O Language!")

}

def result = hello("Oytun")

show(result)

$ olang hello.ola

Hello Oytun! Welcome to the O Language!

You saved the file above and ran it as follows. You can practice on yourself
by changing the contents. Let me explain to you exactly what we do now.
First, we simply defined the function hello. We assigned it a name variable. All
the last things we did we defined the variable result and the function show we
showed it with. It’s that simple.

2.1 File types we need to know

Simply specify the file types you need to know as tables. We’ll find out the
reasons by using them in the other sections.

Dosya Tipi Uzantısı İşlevi

O Language Program .ola O language main program or Program code
O Language Module .olm O Language Module File
O Language Process File Opsfile File running a direct O language process (no extension)
O Language Pacage File olpfile.json O Language Package File
O Language Library File .oll O Language Library File

7

Chapter 3

Working with modules

Modules actually take different functions from outside and include them in our
program, it allows us to make different improvements. We can make libraries
or additional modules.

Now an example module.ola write file.

literal hello(name){

return ("Hello, "+name+"! Welcome to the O Language!")

}

A sample load to load the module. Let’s create an ola file.

load "module.olm"

hello "Oytun";

Let’s elaborate on the functions we do. we have module and load. One
must have an ”olm” extension because it is a module. The other is load. Our
main program loads our module and its functions he’ll transfer it to our main
program. Where literal literal concept specifies that a function is literal. So
previously if there is something about hello, overwrite it and replace it. As in
the example, we have created the hello literal. So we changed the literature.
Then we called this.

Hello Oytun! Welcome to the O Language!

As a result, our main program with the module is above us he ultimately
gave the output involved.

8

Part II

Basic definitions and
functions

9

Chapter 4

Definitions

In this Section more detailed functions and uses of functions we’ll give you space.
We will explain all the functions and explain how to use them.

4.1 How to define?

The constant is used to define. Defining variables as we will see in the example
you’ll be able to. To define a variable def usable.

def definition = object

4.2 Types

There are some species that we need when diagnosing variables. In this section
we will define all species.

4.2.1 String and Integer

Text and numbers allow you to simply define text or Numbers. Various mathe-
matical algorithms using text and numbers or you can do text operations. Text
operations begin and end with ”.

def string = "this is string"

In number operations, you must use a direct number.

def five = 5

As you can see, defining a variable is extremely simple. You can use these
variables throughout the entire main application.

4.2.2 Logical Operations (Boolean)

This type of structure when looking at whether something is right or wrong we
will use. It is extremely simple. The result is returned either true or false.

def right = true

10

CHAPTER 4. DEFINITIONS 11

def notright = false

This is how the definition is used.

4.2.3 Array and Hashes

Arrays are usually ordered structures. These ordered structures are like making
a list. Each element of the list gets a number. Numbers are like a key to this
hybrid structure. Using the key to open the door, it allows you to access the
item behind the door.

def todo = [

"Make Homework!",

"Clean House"

]

println(yapilacaklar[0])

"Make Homework!"

That’s how we made an introduction to the series. We have created a todo
list and we showed him the first element of this list. Let’s work on mixed
structures. Let’s say we have a key and various doors.

def keyring = {

"key1": "room 2",

"key2": "room 2",

"key3": "garage",

"key4": "door"

}

println(anahtarlik["key2"])

"room 2"

In the example, we arranged all the keys to which rooms to open. This way
we can now see where key2 will open. In this way you can make examples. The
spelling is quite simple. You can write your elements directly into the arrays
using ”[]”. In hash structures, you can define your elements as” key : variable”.
The only difference is that you have a key in one and the number (indexes) is
used in the other.

4.2.4 Conditional Expressions (If/Else)

Functions that determine whether a job should be done or other work should
be done, depending on a condition. if (if) and else (if not) are used in these
conditions.

def wrong = true

if(wrong){

println("That is really wrong!")

}else{

println("That is not wrong!")

}

CHAPTER 4. DEFINITIONS 12

"That is really wrong!"

As you can see in the example, error is true because our variable is textitif
the row in is returned. If false, the condition in else will work.

4.2.5 Functions

Now, the real issue is the functions that automate our lives without giving
up. What are these functions? Functions are functions that simply run a
function and variables that we write. Most of the time I do something over and
over again we write a single function and we can use it many times by specifying
its variables.

For example, let’s say you go shopping and you don’t have a to-do list. With
an immediate example Let’s write to-do list functions.

def list = []

def add = fn(todo){

push(list, todo)

println("Todo Added To List!")

}

def get = fn(num){

return list[num]

}

add("tomatoes")

add("milk")

println(show(2))

"milk"

Here we used functions for example. We used three functions. These func-
tions are add, get. All in return gives us back what is in it, or runs everything
in it and returns the results. Here we have defined materials, with the function
add into list with push using the function we had him send the attachments
and returned the result to us with the number get.

4.2.6 Loops

Cycles have often saved lives. List the list or the same thing they are functions
that repeat it rather than do it again. do not write infinite loops when
writing loops. No one can stop something from going into an infinite loop.
because these loops are dangerous. Lock the system. Let’s write a cycle
that doesn’t go that far forever.

def i = 0;

loop(i>5){

println("You cant do this 5 times!");

def i = (i+1);

}

CHAPTER 4. DEFINITIONS 13

You cant do this 5 times!

You cant do this 5 times!

You cant do this 5 times!

You cant do this 5 times!

You cant do this 5 times!

You cant do this 5 times!

Here we simply defined the variable i. using loop , i we ran it until it was
greater than 5 and each run we added another number to i. This loop function it
is a form of work. loop continues to run until the specified ones are synchronized.

Let’s look at this cycle differently. Let’s be a little more restriction. I will
use the to be done part of the loop that I wrote earlier. Let’s make a list by
seeing the items in this list and accessing their contents.

def list = [

"Make Homework",

"Clean House",

"Eat Something",

]

for(list in number,value){

def item = (itostr(number+1)+". "+(value));

println(item)

}

1. Make Homework

2. Clean House

3. Eat Something

As you can see in the example, we’ve edited the entire to-do list. First of all,
we had a list list here. This list number and list of each element in the loop for
set to define and edit the variable value, we printed it out. The only different
thing we use is the number with the itostr function we turned it into a string.
The reason we do this is number and text cannot be collected.

4.2.7 Literals

The litareture structure allows us to modify the existing syntax in the system.
The difference between literals and functions is that it means adding a function
to the programming language. You can change or interfere with the functions
in the system, the function written to you in the language or it allows you to
expand methods. It is often used in modules.

Now I’m going to print out a math library for you as an example. The name
of this file is math.olm will. The purpose of this library is simply to modulate
the functions of simple calculators.

literal sum(x,y){

return (x+y)

}

literal negative(x,y){

CHAPTER 4. DEFINITIONS 14

return (x-y)

}

literal multiply(x,y){

return (x*y)

}

literal divide(x,y){

if(y == 0){

return "infinity"

}

return (x/y)

}

literal fak(x){

def i = 0;

def result = 1;

loop(i==x){

def result = (result * x);

def i = (i+1);

}

return result;

}

Our math library is ready to do its functions. Let’s write a sample program
using the litareture we have prepared. Let the program execute the factorial
operation in fak. In addition, let’s run the sum function.

load "math.olm"

println(fak(12))

println(sum(1,2))

8916100448256

3

As you can see, the result is fak(12) and sum(1,2) results we have already
achieved. You can develop your own literature based on this sample library.

4.2.8 Scopes

The scope structure is often likened to class structures. Here is the scope struc-
ture it is used to collect and integrate many things in a single context. We just
write math. Let’s get the olm module covered and the module is in a scope must
be found.

scope math{

def sum = fn(x,y){

return (x+y)

}

CHAPTER 4. DEFINITIONS 15

def negative = fn(x,y){

return (x-y)

}

def multiply = fn(x,y){

return (x*y)

}

def divide = fn(x,y){

if(y == 0){

return "infinity"

}

return (x/y)

}

def fak = fn(x){

def i = 0;

def result = 1;

loop(i==x){

def result = (result * x);

def i = (i+1);

}

return result;

}

}

We created a math scope in the example. We’ve added functions to it.
Within this math scope, the group of functions is created and enclosed functions
are assigned.

load "scope.olm"

def result = math->fak(10)

println(result)

10000000000

We called our module and the scope of math came up automatically. with
the -¿ parameter, we sent a parameter to thefak function in the scope (we have
accessed the textitfak function). We printed out the result.

4.2.9 Exceptions

Each programming language has a debug section. The Program starts a process
first, and if something goes wrong in the process it will return to something else.
If there is no error, the result will be output. This allows us to debug process
management. Let’s take a look at how it’s used. The types you need to know
here are begin, except, recover, and final. Let’s explain the details of these with
an example.

begin state {

CHAPTER 4. DEFINITIONS 16

def wrong = true

if(wrong){

except state "That is wrong exception!"

}else{

final state{

println("Finally it works!")

}

}

recover state {

println(error)

}

}

That is wrong exception!

We have started a state definition, and we have started this definition we
defined the variable wrong. Here it doesn’t matter if you define the variable
inside or outside. If the variable wrong is true, the state definition will generate
an error process. apply the recover method to the state definition. Accordingly,
from except define the message to state and use it as you wish. If a problem does
not occur in the process state process sending final ensures smooth completion
of the process.

Chapter 5

Input and Output

There are several methods to get information from the user from the terminal
or to print something on the screen. input and output functions show and
println functions on the O Language according to the new version it provides
two additional options, depending on the different.

//input function:

def data = (input("Enter value: "))

//output function:

output("You entered: "+data)

Enter value: example

You entered: example

As the example shows, we have received a data entry from the input terminal,
and we have it in the data variable . it even. Then we output it with the output
function. These functions are technically show and println are similar functions.

17

Chapter 6

Math Operators

Mathematical operators have become an essential part of our lives. Apart from
doing four basic operations with these operators, we do not use these operators
in our functions. we became able to use it. These functions are extremely simple
in That Language.

6.1 Basic Functions

In this section, we will see simple calculation functions. How to use them and
use them in definitions We will learn.

6.1.1 Addition

The plus + sign is used for the addition.

def result = 2 + 2

inspect(result)

4

6.1.2 Extraction

The minus - sign is used for extraction.

def result = 2 - 2

inspect(result)

0

6.1.3 Divide

The slash / sign is used for the divide operation.

def result = 2 / 2

inspect(result)

1

18

CHAPTER 6. MATH OPERATORS 19

6.1.4 Multiplication

Asterisk * is used for multiplication.

def result = 2 * 2

inspect(result)

4

For now, you can do math with these operations.

6.2 Yardımcı İşlevler

Here are a few simple functions that you can use for basic math operators in
that language comes with. You can use it when you need them.

6.2.1 Sum

The sum function is similar to the sum function in mathematics. But here
it is worth paying attention to by summing the two elements in the first two
variables, it applies this to the set or function specified in the last variable.

def result = (math_sum(1,2, [1,2,3,4]))

inspect(result)

[3, 9, 18, 30]

As you can see, summing the numbers 1 and 2 directly to each element in
the designated second sequence, he applied it to the cluster. We will explain
this in more detail in the Mapping Functions section later.

6.2.2 Abs

If you give the number you want to get the absolute value of, as a result, you
will get a number it will give its absolute value. The abs function is used here.

math_abs(-12)

12

It will simply take its absolute value and return the result.

Chapter 7

Geometry Functions

Some simple functions for you to perform geometric operations are available in
this Language. This Help let’s detail the functions with you.

7.0.1 Logarithm (Log)

You can use the log function to get the logarithm.

math_log(12)

2.4849066497880004

7.0.2 Cosine (Cos)

You can use the cos function to get cosines.

math_cos(12)

0.8438539587324921

7.0.3 Tangent (Tan)

To get a tangent, you can use the tan function.

math_tan(12)

-0.6358599286615807

20

Chapter 8

Comparison Functions

In this section, we will give the operators that you will use to compare the two
expressions. You can make comparisons with these operators. In october, you
can use the comparisons you make in internal functions and variables.

8.1 Equals

The equals operator, which allows you to compare two elements and get the
right result when two elements are equal it will compare the two items and give
the correct or incorrect result.

def falseResult = (1 == 2)

def trueResult = (1 == 1)

inspect(falseResult)

inspect(trueResult)

false

true

8.2 Is Not Equal

An equal operator that allows you to compare two elements and get the right
result if the two elements are not equal it will compare the two items and give
the correct or incorrect result.

def falseResult = (1 != 2)

def trueResult = (1 != 1)

inspect(falseResult)

inspect(trueResult)

true

false

21

CHAPTER 8. COMPARISON FUNCTIONS 22

8.3 Larger

It is the operator that provides the correct or incorrect result by looking at
whether one element is larger than the other.

def brother = 10

def bigBrother = 20

inspect(brother > bigBrother)

inspect(bigBrother > brother)

false

true

8.4 Smaller

It is the operator that provides the correct or incorrect result by looking at
whether one element is smaller than the other.

def brother = 10

def bigBrother = 20

inspect(brother < bigBrother)

inspect(bigBrother < brother)

true

false

8.5 Bigger than or Equal

An operator that checks the magnitude and equality of one element to another
and returns a correct or incorrect result as a result.

def brother = 10

def olderSister = 20

def bigBrother = 20

inspect(olderSister >= bigBrother)

inspect(brother >= olderSister)

inspect(brother >= bigBrother)

true

false

false

8.6 Smaller than or Equal

An operator that checks the small and even volume of one element to another
and returns a correct or incorrect result as a result.

CHAPTER 8. COMPARISON FUNCTIONS 23

def brother = 10

def olderSister = 20

def bigBrother = 20

inspect(olderSister <= bigBrother)

inspect(brother <= olderSister)

inspect(brother <= bigBrother)

true

true

true

Chapter 9

Mapping Functions

Mapping functions in a programming language by clustering every element in
an element, the function is called the application function. Each element of the
set is defined to a variable in the function. Array a single element is used. In
mixed structures, two elements are used.

def numArray = [1,10, 30, 40, 50]

def result = (map(fn(x){

return x*x

}, numArray))

inspect(result)

[1, 100, 900, 1600, 2500]

As you can see, we multiplied all the elements in the array with itself and
returned them to the array.

24

Chapter 10

File Operations

Working with files is extremely easy. Let’s start with the read and write func-
tions. Every time you perform operations on files, you can change the file or
change its contents doing work is the most necessary feature in every environ-
ment. Some programming languages this keeps things as long as possible. The
functions you will see here are directly it’s about the system.

10.1 File Read

To read a file, we simply use read. Read the file and set it to a variable we just
need to assign it.

def test = read("deneme.txt")

We have read our file with the read function. Finally, we equated it to the
trial variable. The resulting text will return.

10.2 File Write

To write a file, simply use write. Any stress or consequence prints directly to
the file.

def content = "This is a test";

write("test.txt", content)

As in the example, we have printed our content text to our test.txt file.

10.3 File Delete

Dosya silmek için basit olarak remove kullanılır. Doğrudan dosyayı sistem ta-
banında siler.

remove("test.txt")

In the example, we deleted our test.txt file.

25

Chapter 11

Folder Operations

You will learn a few functions for performing simple operations on directories.
In this section, you can work on directories. First of all, let’s talk about the
indexing function. With your existing user allows you to create an index.

mkdir("myfile")

we have created our directory with the mkdir function. Now let’s delete this
directory.

rmdir("myfile")

The directory and everything in it have been deleted. Now let’s write a
program with these file and indexing functions.

scope sys{

def readFile = fn(file){

return read(file)

}

def deleteFile = fn(file){

return remove(file)

}

def writeFile = fn(file, content){

return write(file, content)

}

def showEveryOne = fn(file){

return chmod(file, 777)

}

def showToMe = fn(file){

return chmod(file, 644)

}

}

26

CHAPTER 11. FOLDER OPERATIONS 27

We have created scope for water functions sys; readFile, writeFile, deleteFile,
showEveryOne and showToMe. These functions are to perform the functions
written in the name. Only two functions call the chmod (change authorization)
function. The 777 is authorized for everyone to see. The 644 permission is
granted only for the user to see it at the moment. We will discuss the details of
these parts in more detail in the Permissions section.

load "sys.olm"

sys->readFile("test.txt", "test text")

def deneme = sys->deleteFile("test.txt")

sys->showEveryOne("test.txt")

sys->deleteFile("test.txt")

We called our module and printed text to our test.txt file and read it. We
called the function that says that everyone should see it. Then we deleted our
file. All of them are functions included in the scope of sys.

Chapter 12

System Operations

We will touch on the changes that concern the operating system side. This
part you can do only on the operating system it will consist of some important
regulations or functions.

12.1 File Permissions

If you have knowledge of linux/unix, we assume that you have mastered the
powers. If you are not a judge, we will talk about the powers in this section.
Authorization on the system side is a set of functions that restrict or increase
access to which file or folder you can access. For example, you have created a
file that you do not want to be read. If you apply the necessary authorization
to it after reading it, the user will not be able to access it. Only the file will
be read by the program. We can program it so that the necessary actions are
performed after reading it.

def myFile = "myFile.txt";

def readMyFile = read(myFile)

chmod(myFile, 000)

println(readMyFile)

chmod(myFile, 755)

As you can see in the example, I have read the file and applied the 000 (oct)
authorization. The file can be read on the program side, but it will receive an
authorization error when the user tries to open it. And then I gave him the
authority back again. You can lock it while reading any file on the program
side. The chmod function is sufficient for this. I’ll tell you how to calculate
these powers in a little while.

The parameters and their meanings can be found in the table below. To
make a calculation, collect these powers. And write in threes, side by side.

For example, to grant write permission to a write group and user;

4+2+0 = 6

4+2+0 = 6

0+0+0 = 0

chmod(myFile, 660)

28

CHAPTER 12. SYSTEM OPERATIONS 29

Parametre Anlamı

u User
g Group
o Other
a Everyone
r Read
w Write
+ Give Permission
- Take Permission
4 Read Permission (Numeric)
2 Write Permission (Numeric)
1 Execute Permission (Numeric)

You can use it in the form.

12.2 System Environment Operations

System variables allow you to access the system’s variables. In addition, you
can perform operations on these variables.

def path = sysenv("PATH")

For example, here we have checked the PATH variable in the system, and
we have our own path variable we equalized.

12.3 System Commands and Processes

You need to run other commands on the system and use them to function we
will summarize the functions in this section.

proc is used to start different types of operations in the system. For example
if we want to list files in a directory in a different way, on linux/unix platforms
ls we’ll use your command.

def ls = (proc ls "ls" "-l")

println(ls)

.

CHAPTER 12. SYSTEM OPERATIONS 30

..

forloop.ola

hello.c

hello.ola

load.ola

loop.ola

math.olm

mathtest.ola

merhaba.ola

modul.olm

proc.olm

scope.olm

scopetest.ola

sock.olm

sys.olm

systest.ola

todo.ola

You can define the result of the operation to a variable if you want.

12.4 Connections

We usually use ports to make connections through the system. After opening
the port, we can communicate between the two computers by connecting to the
port from another system. We’ll see how to make these bilateral connections in
a little while.

12.4.1 Socket Open and Listen

Bağlantı kurabilmek için öncelikle bir port açmak gereklidir. Bu işlemi yapa-
bilmek için sock yapısını kullanmalıyız.

sock socket "tcp4" "9050" "0.0.0.0";

def messages = {

"ping": "pong"

}

sock_listen(socket, messages);

As can be seen from the example, we have opened a socket for the socket
variable. we have put the port on standby to respond to messages from the tcp4
9050 port. If the ping message comes from the opposite side, the pong answer
will be given.

12.4.2 Socket Connection

In order to connect to a port, you must first open the socket. After that, you
can send messages to the port as raw using send.

sock socket "tcp4" "9050" "0.0.0.0"

sock_send(socket, "ping")

CHAPTER 12. SYSTEM OPERATIONS 31

"pong"

As in the example, after opening the socket, we sent our message with send.
Just you need to be careful the programs that make the connection and access
the connection are two separate programs.

client: send -> ping -> listen (9050)

server: listen (9050) -> pong -> send

It can be exemplified in the way mentioned above.

Part III

Web Server and Database
Operations

32

Chapter 13

Web Server

In this section, web-based studies are included in the system we will run a
website with auxiliary functions. later We will simply link the website we have
made to the database. General studies on routing and databases are based on
that language you will learn how it can be written.

13.1 Routers

Router (Router), with any method they are structures consisting of queries to
ports 80 or 443. Some header information to be able to query these routers it is
sent and the machine on the opposite side responds to this header information
it is desirable. If there is no such thing, various error codes are returned. The
webserver function is used to write these routers in the O Language. This func-
tion is automatically called a web-based router by making various adjustments
is generated. As a result, a web server runs when the code is executed.

def config = {

"route path": {

"type": "method :

|GET

|POST

|PUT

|DELETE

|PATCH

|OPTIONS

|HOST

|UPLOAD

|STATIC

|STREAM",

"response": "response content",

"input": "input content or data",

"maxsize": "max file size (MB)",

"headers": "header information",

"folder": "folder path",

"data": "data information",

"host": "request accept only this host",

33

CHAPTER 13. WEB SERVER 34

}

}

webserver(port, config);

Specifying a setting hash array and port as specified above you can create a
web server. We have specified all the details so that you can use it. Let’s look
at the ways of using methods.

13.1.1 GET

The Get method is the only method used to pull data.

"/get": {

type: "GET",

response: "Response Content"

data: {}

}

The method of use is as follows above. Other entered values are invalid.

13.1.2 POST

The post method allows you to send data to the server. In October, in the data
section parameters can be specified.

"/post": {

type: "POST",

response: "Hello {% parameter %}!"

data: {

parameter: "Oytun"

}

}

The parameters can be rendered into the answer as follows;

{% parameter %}

In addition, what parameters will be october in the data section it should
be given.

13.1.3 PUT

The put method is the method of throwing it inside. It works similarly with
Post. With HTTP/2 it is an included feature.

"/put": {

type: "PUT",

response: "Hello {% name %}!"

data: {

name: "Oytun"

}

}

CHAPTER 13. WEB SERVER 35

{% parameter %}

In addition, what parameters will be october in the data section it should
be given.

13.1.4 UPLOAD

Performs upload upload functions. Using the post method when files are sent
to this address from the form or in any way automatically move to the folder
specified in the folder parameter it is saved. In October, input is accepted from
the form. If the file upload limit is to be specified, maxsize is specified in MB.
If this is not specified, you may receive an error. That’s why when writing your
program you can keep the file upload limit at the highest value that can be
useful to you.

"/upload": {

type: "UPLOAD",

input: "files",

maxsize: "512",

folder: "upload/"

}

13.1.5 DELETE

Delete is the deletion method that comes with HTTP/2. Delete functions in
this method can be done.

"/delete": {

type: "DELETE",

response: "Deleted! {% data %}!"

data: {

name: ""

}

}

13.1.6 STATIC

Static is used to list fixed files and return them it is a method. It lists only the
files that are in the folder.

"/public/*filepath":{

"type": "STATIC",

"folder": "/public/"

}

The only thing to note here is the filepath address. Matched and related the
file is recalled.

Now let’s create a real web server with an example.

def config = {

"/": {

CHAPTER 13. WEB SERVER 36

"type": "GET",

"response": "Welcome to the O Language!"

}

}

webserver("8080", config);

$ curl localhost:8080

Welcome to the O Language!

We have opened a web server on the 8080 port in the example and GET
it from the homepage we made sure that he answered the queries that came
with his method. In this way, you can create your own using the settings and
redirects you can create your web servers.

Chapter 14

Database Management

In this section, how to work with the database on that language is done. Simple
as introduction you will receive. We will create models and create links on the
database we’ll do the study. Databases are used to connect to the database
and to pull data. Databases it can usually be used to hold very large or small
data. That language contains a database structure in itselfplays. If you want
to connect with external databases you can install it. Or you can do file-based
work on the internal database.

14.1 Model and Connections

In order to use the database, you must first establish a connection. A simple
Model with sample codes on how you can connect we’ll do the work.

def db = (database("type","connection address"))

Using the Database function, type the database and address to open the link
we have connected it to the db variable.

def model = (model(db, "table", {

"id": "int"

....

}))

Using the Model function, we have connected a table to the database we are
connecting to to our model.

Now let’s collect them all in one simple example and describe them in detail.

def connection = (database("internal","database"))

def user = (model(connection, "users", {

"id": "int",

"name": "text",

"surname": "text",

"username": "text",

"password": "text",

}))

37

CHAPTER 14. DATABASE MANAGEMENT 38

We have defined a connection and created our database we have set it to
internal. We use our internal database. We have set this database to be stored
in the database folder. We have created a user model and set it as the user
model in the following sections we will use.

14.2 Table Create, Drop, Truncate (Migrate/-
Drop/Truncate)

If the database supports migrate and drop operations, this section we will talk
about the functions of deleting and creating tables.

//migrate function:

migrate(model)

//drop function:

drop(model)

The migrate function creates an object whose model we have already written
it automatically creates a database and saves its history. if drop is this is
the exact opposite. Destroys the specified database. Let’s detail this with an
example.

def connection = (database("internal","database"))

def user = (model(connection, "users", {

"id": "int",

"name": "text",

"surname": "text",

"username": "text",

"password": "text",

}))

//drop function:

drop(user)

//migrate function:

migrate(user)

We have created a user model in our database and the model if there is,
we first deleted it with the drop function. Then the migrate function we have
recreated our table with.

As an alternative to these situations, the truncate function can be used. This
function will delete the table instead of Delete the contents of the table.

truncate(model)

All data contained in the model will be deleted.

CHAPTER 14. DATABASE MANAGEMENT 39

14.3 Create

The create function that we will use to create data in the database available.
With this function, we can start saving data to the models we have created. In
simple terms, the way it is used is as follows.

create(model, {...data...})

Veriler kısmında veriler yer alacağı için bunu bir örnekle gösterelim.

def connection = (database("internal","database"))

def user = (model(connection, "users", {

"id": "int",

"name": "text",

"surname": "text",

"username": "text",

"password": "text",

}))

// create fonksiyonu:

create(user, {

"id": "1",

"name": "Oytun",

"surname": "Ozdemir",

"username": "oytun",

"password": "1234"

})

We have created data on the connection we have already established and on
our model. we created our data by sending data to our user model.

14.4 Update

We use update to update data in our database. We can use it to correct a
mistake we made earlier or to update data. Simple usage is down.

update(model, {...data...})

The data that you will send from the Data section will be changed to the
old one. New data is written instead. Let’s detail this with an example.

def connection = (database("internal","database"))

def user = (model(connection, "users", {

"id": "int",

"name": "text",

"surname": "text",

"username": "text",

"password": "text",

}))

CHAPTER 14. DATABASE MANAGEMENT 40

// create function:

create(user, {

"id": "1",

"name": "Oytun",

"surname": "Ozdemir",

"username": "oytun",

"password": "1234"

})

//update function:

update(user, {

"id": 1,

},{

"password": "gaiB3woo"

})

Using the update function at the bottom of the example i’ve updated my
password. You can also experiment by updating your data.

14.5 Fetch

To pull data and convert relevant data into a variable according to a specific
data from the database we have a fetch method for assigning. You can capture
data using this method.

def results = (fetch(model, {...data...}))

Specifying what you need in the data part to be queried, you can specify the
data that is relevant to it you can pull and synchronize to an array. Now let’s
detail this with an example.

def connection = (database("internal","database"))

def user = (model(connection, "users", {

"id": "int",

"name": "text",

"surname": "text",

"username": "text",

"password": "text",

}))

// create function:

create(user, {

"id": "1",

"name": "Oytun",

"surname": "Ozdemir",

"username": "oytun",

"password": "1234"

})

CHAPTER 14. DATABASE MANAGEMENT 41

//update function:

update(user, {

"id": 1,

},{

"password": "gaiB3woo"

})

//fetch fonksiyonu:

def userFetch = (fetch(user, {"id": 1})

inspect(userFetch)

{

"id": "1",

"name": "Oytun",

"surname": "Ozdemir",

"username": "oytun",

"password": "1234"

}

As you can see in the example, you can pull out the user with ID 1 i have
synchronized it with the variable userFetch and with inspect we looked at the
incoming data.

14.6 Query

If your database allows you to run a query, you can run a query.

def result = (query(model, "SQL query", {...parameters..}))

In order to run a query, you need to know SQL or a similar database. It
allows you to run queries directly if you have SQL knowledge. In this case, Let’s
try.

def connection = (database("internal","database"))

def user = (model(connection, "users", {

"id": "int",

"name": "text",

"surname": "text",

"username": "text",

"password": "text",

}))

// create function:

create(user, {

"id": "1",

"name": "Oytun",

"surname": "Ozdemir",

"username": "oytun",

CHAPTER 14. DATABASE MANAGEMENT 42

"password": "1234"

})

//update function:

update(user, {

"id": 1,

},{

"password": "gaiB3woo"

})

//fetch function:

def userFetch = (fetch(user, {"id": 1})

inspect(userFetch)

//query function:

def userList = (query(user,

"SELECT * FROM users LIMIT ?",

100))

The query function I wrote last will not work because my internal database
does not support it. But it runs the SQL query on supported databases and
adds the UserList variable to our he will send it. The purpose of this query is
to limit and attract 100 users. If you have SQL knowledge, this way you can
write queries. An important point to note here are the parameters leading to
the SQL query it is added to the query by filtering and you will not have a SQL
Injection problem. SQL Injection is a security problem. A security that allows
you to run queries that are added to the parameter problem. In O language,
these parameters are automatically checked and things entered as parameters
are automatically cleaning is provided.

14.7 Delete

Deleting operations delete data from the database using queries or parameters
provides. The delete function is used here.

delete(model, {...parameters...})

The data related to the parameters will be deleted using the model. Let’s
reinforce this with an example.

def connection = (database("internal","database"))

def user = (model(connection, "users", {

"id": "int",

"name": "text",

"surname": "text",

"username": "text",

"password": "text",

}))

CHAPTER 14. DATABASE MANAGEMENT 43

// create function:

create(user, {

"id": "1",

"name": "Oytun",

"surname": "Ozdemir",

"username": "oytun",

"password": "1234"

})

//update function:

update(user, {

"id": 1,

},{

"password": "gaiB3woo"

})

//fetch function:

def userFetch = (fetch(user, {"id": 1})

inspect(userFetch)

//query function:

def userList = (query(user,

"SELECT * FROM users LIMIT ?",

100))

//delete function:

delete(user, {"id": 1})

As can be seen from the example, we deleted the user with ID 1.
In this section about the database, we have transferred the main business

houses to you. You can complete this section by making examples yourself. In
the next sections we will make examples on these databases.

14.8 Search

If your database supports it, the search function is available, which makes it
easy for you to search. Let’s summarize search function with an example.

def connection = (database("internal","database"))

def user = (model(connection, "users", {

"id": "int",

"name": "text",

"surname": "text",

"username": "text",

"password": "text",

}))

// create function:

create(user, {

CHAPTER 14. DATABASE MANAGEMENT 44

"id": "1",

"name": "Oytun",

"surname": "Ozdemir",

"username": "oytun",

"password": "1234"

})

//search function:

def result = (search(user, {"name": "o"}))

Here it searches according to the parameters sent to the search function.
The results return to us as a mixed setplays.

PS: Not every database may support this method. In order to
support it, the most indexing feature must be present in the database.

Part IV

Helper Functions

45

Chapter 15

What is helper
functions/internal
functions?

Helper functions should usually be in a programming language it contains fea-
tures that help with the functions performed. In this section, the details of these
functions we will talk about.

15.1 File Render

Create a new variable by sending some parameters to the file contents in that
Language file rendering operations are available that help.

def result = (renderf("file.txt", {...data...}))

The result is added to our variable.by sending data to the file.txt content, a
new we have created text. Variables can be defined as;

{% parameter %}

In this way, the data coming from outside is replaced with parameter. The
new the text can be used as desired.

15.2 XML Helpers

XML files are not only in the XML content that we pull from the url xmlf
functions that we can use when working with normal XML it contains. When
working with XML (X Markup Language) files, you can use the read function
and retrieve its contents it was developed in order not to write too much code
on it. To send an XML parcel, use xmlf its function will be useful to you.

def result = (xmlf("file.xml"))

46

CHAPTER 15. WHAT IS HELPER FUNCTIONS/INTERNAL FUNCTIONS?47

Using the xmlf function on the result variable file.i pulled my xml file and
we defined it.

If you want to convert text, not a file, you can use the xmlp function.

def result = (xmlp("...xml content..."))

Using the xmlp function on the result variable we have defined the content
written in xml.

15.3 JSON Helpers (JSON encode/decode)

It is quite easy to work with JSON files. For this, we have a few simple functions
available. These are the jsonp and jsonf functions.

//jsonp function:

def result = (jsonp("json content"))

//jsonf function:

def result = (jsonf("file.json"))

jsonp function displays the contents of the incoming JSON as text converts
it to a mixed array and, as a result, returns an object.

the jsonf function automatically retrieves a JSOn file by converts it to a
hash array and, as a result, returns an object.

Using these two functions, you can create JSON content that comes from a
file or as text You can use it on that Language.

15.4 Color Helper (Colorize)

It is an auxiliary function developed for receiving color output from the terminal.
If your terminal supports colors you can get color output.

colorize("red", "Hello Red!")

colorize("blue", "Hello Blue!")

colorize("green", "Hello Green!")

colorize("yellow", "Hello Yellow!")

colorize("grey", "Hello Grey!")

colorize("black", "Hello Black!")

colorize("bold", "Hello Bold Color!")

colorize("magenta", "Hello Magenta!")

colorize("white", "Hello White!")

colorize("red", "Hello Red!", true)

colorize("blue", "Hello Blue!", true)

colorize("green", "Hello Green!", true)

colorize("yellow", "Hello Yellow!", true)

colorize("grey", "Hello Grey!", true)

colorize("black", "Hello Black!", true)

colorize("bold", "Hello Bold!", true)

colorize("magenta", "Hello Magenta!", true)

colorize("white", "Hello White!", true);

You can use the colors directly on your terminal.

CHAPTER 15. WHAT IS HELPER FUNCTIONS/INTERNAL FUNCTIONS?48

15.5 Regular Expressions

Regular expressions make it easy to process complex texts today it can be
characterized as groups of parameters. How to set these parameters on that
language let’s see it processed.

def rex = "[A-Z][a-z]"

def result = regexp_check(rex, "Hello!")

true

The check method verifies whether a regular expression given in a text exists.
As a result, it provides us with a correct or incorrect return.

def rex = "he"

def result = regexp_find(rex, "Hello!")

["he"]

The find function finds what is in it for us and returns it as an array. In
this way, we can perform extraction and verification on the text using regular
expressions.

15.6 Encryption Helpers (Encrypt/Decrypt)

They are an auxiliary function used to encrypt text or encrypt content. These
encryption functions encrypt the text and help hide it.

// example encrypt:

def encText = (encrypt("KEY", "text"))

// example decrypt:

def decText = (decrypt("KEY", encText))

As in the example, we encrypted the text using the key to our encText
variable. The encText variable cannot be used or output here. We can save it
by writing it to a file. It may be necessary to solve it because its contents are
not displayed. Using the key in the second decText function to decode we can
decode the text and get to the text. As you can see, it is quite easy to use.

15.7 Replace Helper

When working on texts, the replace function is used to find and change the text.
This function finds and modifies the text specified in the text.

def text = "Hello content!"

def text = (replace(text, "content", "O Language"))

output("%s",text)

"Merhaba O Language!"

As you can see, we replaced the word ”content” with ”O Language” using
replace. You have your own tests you can do it.

Part V

Dangerous Waters
(Biohazard)

49

Chapter 16

Why?

The purpose of this part is to be critical and finally to explain the purpose of
these critical processes in the system the fact that it is running directly on your
side and the actions you will take in this part may damage your system. If
you need very low-level programming functions, the operations here are on the
system side it can make you do physical work.

PS: This works with very low-level functions and low-level pro-
gramming knowledge is also required.

50

Chapter 17

Use Text as Code (Eval)

This can be used in very critical situations. Enter a code eval as text you
can make a text run directly using the function. The harmful thing about
this function is that if there is an encrypted content, you can use it by decrypt
you can execute. In this case, calling unknown codes can damage the
system.

We will give a dangerous example. This example will only be useful for you
to understand the incident in more detail.

def code = "def x = 1";

(eval(code))

inspect(x)

1

As you can see in the example, our code variable must contain a code. we
ran this with eval. The code in it worked automatically, and the variable x he
was identified.

Now we will give you a more dangerous example.

// key.txt:

111-222-444

// source.ola:

def x = 1

// encrypt.ola:

def key = (read("key.txt"))

def source = (read("source.ola"))

def file = (encrypt(key, source))

write("encrypted.ola", file)

// decrypt.ola:

def key = (read("key.txt"))

def file = (read("encrypted.ola"))

def result = (decrypt(key, file))

eval(result)

inspect(x)

51

CHAPTER 17. USE TEXT AS CODE (EVAL) 52

1

Now let’s explain this example. We have created a key file to hold the key.
This file will carry the key that will open the file. our source file will contain the
codes to be encrypted. encrypt will be our encryption program. our program
decrypt will decrypt and execute the code. When decrypting key.txt file you
will use. Since the encrypted file cannot be read in any way, the user will not
see the source of the code. This way the file will work encrypted.

In this section, the danger is exactly in the encrypted file. Because
this code is encrypted, it is a dangerous it may contain source code.
This may cause damage or damage to the computer. Or it can be
decoded and added to the code by someone else and encrypted again.
This is a dangerous process.

Chapter 18

Machine Code Execute
(Assembly)

Running Assembly operators directly is an extremely risky situation. A vir-
tual processor directly on the machine these codes are operated on it, and the
machine directly physically operates these codes. Execute the codes in this
section it can provide extremely dangerous consequences. If you don’t
have Assembly knowledge, you should first know what these codes are
running.

Here we will only show you how it works. Therefore, instead of giving
examples, you should test these codes on your own side. To use these operators,
the asm function is used.

asm(operationCode, parameters, parameters...)

Let’s test our code by making an example hello world.

def hello = "Hello!";

def len = len(hello)

asm("DB", "0xa", hello)

asm("EQU", len)

asm("MOV", "edx", len)

asm("MOV", "ecx", msg)

asm("MOV", "ebx", 1)

asm("MOV", "eax", 4)

asm("INT", "0x80")

asm("MOV", "eax", 1)

asm("INT", "0x80")

Hello!

By using Assembly DB, you can access the 0xa address in memory with
the command ”Hello!” we wrote down our variable. Calculate its size and start
at 0xa in memory and wait until it reaches this value that this message will
be located we have indicated. We moved all these values to the edx and ecx

53

CHAPTER 18. MACHINE CODE EXECUTE (ASSEMBLY) 54

addresses. we have sent 1 to the ebx block. This means output the system. we
sent 4 to eax. This means that this data block is added to the system, that is
it means that you write data with the value 0xa in memory and the size eq. we
have sent 0x80 to the int block. It has the function of calling from the system.
we sent 1 to eax. and we ran the callback function again. It means that you
call the variable sent to the system and send an output signal to the system.

In this way, we have started machine operations. We processed the machine
code to the low-level processor to return the result.

Chapter 19

Execute Programs
(Open/Run/Exec)

Running commands may not actually be dangerous. But sometimes the func-
tions here can be used to run malicious software. These commands can
damage our system. We still want you to find out. Therefore, we will sum-
marize their functions in this section.

19.1 Open Programs (Open)

The open command allows you to open and run programs directly on the system.
Using this command you can open an application on the system.

open("program", ...parameters...)

You can open the application using the program and parameters.

open("firefox")

As in the example, we ran firefox. If your system is suitable for running the
interface firefox they will work.

19.2 Run Applications (Run)

The command execution function allows you to execute different commands.
You may not be able to control running commands if you run com-
mands without creating a process.

run("program", ...parameters...)

As an example, let’s run a program and synchronize its results with a vari-
able.

def result = (run("ls", "-la"))

We run the listing command and synchronize it with the variable result.

55

CHAPTER 19. EXECUTE PROGRAMS (OPEN/RUN/EXEC) 56

19.3 Execute commands on OS shell (Exec [SH/CMD])

If you know which system you are working on, start the appropriate system
startup functions and; you can synchronize the results to a variable.

sh works only on linux and unix-type systems:

def result = (sh_exec("ls", "-la"))

cmd works only on windows-type systems:

def result = (cmd_exec("dir", "/w"))

In this way, you can run platform-specific commands that you are working
with. In two result variables executes the listing commands. In this way, you
can run your own commands.

PS:Running a program or command without opening a transaction
in this way is like performing an operation in an extremely uncon-
trolled way. You can damage your system. It will be more convenient
for you to run a command by opening a process as we mentioned in
7.3.

Part VI

Example Real World
Applications

57

Chapter 20

Web Framework
Development

Web Frameworks provide various auxiliary functions when creating or running
a website they are structures that contain. Access to a website so that people
can view the codes written as a whole they transform it.

To make a web roof, first determine how to make a folder structure. Let’s
start with a simple folder structure and determine the other structure.

boot.ola

config

controllers

database

library.olp

proc.ops

public

templates

Boot the program.we will run it with the ola file. By reading the config files,
By including controllers files; It will perform rendering operations via Tem-
plates. It will display the pages to the person browsing the site in accordance
with the redirects on the Config. Libraries downloaded from outside are kept
independently under vendor. If it is in the Public folder, it is open to everyone
the files will be listed. Now let’s look at the source codes of our Application.
You can download these source codes we will share the address at the end of
the study.

// boot.ola:

Controllers

load "vendor/ondle.ola"

load "controllers/index.olm"

Configuration Definitions

load "config/config.ola"

58

CHAPTER 20. WEB FRAMEWORK DEVELOPMENT 59

println("Server running on 0.0.0.0:80.")

webserver("80", config)

Our boot file is ondle under vendor.the ola file is the controller/index.the
olm module, config/config.it starts a web server on port 80 by including ola
setting files.

// config/config.ola:

def config = {

"/": {

"type": "GET",

"response": (main())

}

};

def db = (database("internal","database"));

There are routing and database variables in our Config file.

// controllers/index.olm:

def main = fn(){

return (renderf("templates/index.html",

{

"title": "Olang Web Framework | Index",

"body": "Welcome to the Olang Web Framework."

}

));

};

The index controller module templates/index.which writes the title and body
variables to the html file, makes a main definition.

// library.olp

{

"package": "olf",

"publisher": {

"name": "Oytun",

"email": "info@oytun.org",

"github": ""

},

"sources": "src",

"main": "boot.ola",

"requires": [

{

"name": "olang-html",

"src": "https://gitlab.com/olanguage/libraries/olang-html.git"

}

],

"compiled": "",

"install": null,

"jobs": [

{

CHAPTER 20. WEB FRAMEWORK DEVELOPMENT 60

"name": "start-web",

"command": "olang process --start true"

},

{

"name": "stop-web",

"command": "olang process --stop true"

}

],

"type": "project"

}

A library with libraries and requirements.the olp file,

$ olang install

[!] INFO: "vendor" path not found. Path creating...[ready]

[>] Fetching [olang-html][done]

[>] Compiling [vendor/olang-html/src/main.ola]

[>] Compiling [/home/ted/workspace/olf1/vendor/olang-html/src/component.ola]

[>] Compiling [/home/ted/workspace/olf1/vendor/olang-html/src/html.ola]

[>] Compiling [/home/ted/workspace/olf1/vendor/olang-html/src/form.ola][done]

[>] Writing Autoload... [vendor/ondle.ola][done]

[X] Fetch Completed.

it automatically loads libraries under vendor when the installation command
is run.

// proc.ops

[olang]

boot: boot.ola

$ olang process --start true

2020/08/15 18:35:06 Running Proc: 5874

2020/08/15 18:35:06 open nohup.out: no such file or directory

Proc.our ops file specifies which process will be run in the background as a pro-
cess with which name. When we call the Process command, it will automatically
run the functions connected to this file and our website will be available it will
open.

	I System Oriented Functional Programming Language
	What is System Oriented Functional Programming Language? (SOFPL)
	Hello World for C and O language!
	Installing
	Download or obtain Binary file
	Compile from source code
	Work with that O Language on Docker

	Dosyalarla çalışmak
	File types we need to know

	Working with modules

	II Basic definitions and functions
	Definitions
	How to define?
	Types
	String and Integer
	Logical Operations (Boolean)
	Array and Hashes
	Conditional Expressions (If/Else)
	Functions
	Loops
	Literals
	Scopes
	Exceptions

	Input and Output
	Math Operators
	Basic Functions
	Addition
	Extraction
	Divide
	Multiplication

	Yardımcı İşlevler
	Sum
	Abs

	Geometry Functions
	Logarithm (Log)
	Cosine (Cos)
	Tangent (Tan)

	Comparison Functions
	Equals
	Is Not Equal
	Larger
	Smaller
	Bigger than or Equal
	Smaller than or Equal

	Mapping Functions
	File Operations
	File Read
	File Write
	File Delete

	Folder Operations
	System Operations
	File Permissions
	System Environment Operations
	System Commands and Processes
	Connections
	Socket Open and Listen
	Socket Connection

	III Web Server and Database Operations
	Web Server
	Routers
	GET
	POST
	PUT
	UPLOAD
	DELETE
	STATIC

	Database Management
	Model and Connections
	Table Create, Drop, Truncate (Migrate/Drop/Truncate)
	Create
	Update
	Fetch
	Query
	Delete
	Search

	IV Helper Functions
	What is helper functions/internal functions?
	File Render
	XML Helpers
	JSON Helpers (JSON encode/decode)
	Color Helper (Colorize)
	Regular Expressions
	Encryption Helpers (Encrypt/Decrypt)
	Replace Helper

	V Dangerous Waters (Biohazard)
	Why?
	Use Text as Code (Eval)
	Machine Code Execute (Assembly)
	Execute Programs (Open/Run/Exec)
	Open Programs (Open)
	Run Applications (Run)
	Execute commands on OS shell (Exec [SH/CMD])

	VI Example Real World Applications
	Web Framework Development

